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ABSTRACT

A formulation of the problem of detecting outliers as an empirical
Bayes problem is studied. In so doing what arises is a non-standard
empirical Bayes problem for which the notion of average risk asymptotic
optimality (a.r.a.o.) of procedures is defined. Some general theorems
giving sufficient conditions for a.r.a.o. procedures are developed. These
general results are then used in various formulations of the outlier problem
for underlying normal distributions to give a.r.a.o. empirical Bayes
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of Johns and Van Ryzin (1971, 1972).
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AN EMPIRICAL BAYES APPROACH TO OUTLIERS

Enrique de Alba and J. Van Ryzin1

1. Introduction.

It is not uncommon to find samples in which some of the observations
appear suspiciously far away from the main group. Such observations
are often called outliers.

The problem appears in the literature as early as 1838, when Bessel
mentioned the simple rule of not rejecting any observations. There is a
large number of results on the topic, which consider the causes of outliers
and present different solutions. There are several articles which include
excellent historical reviews of the work done in this area. See for example
de Alba (1974), Rider (1933), Ferguson (1961a, 1961b) and Guttman and
Smith (1969).

The outlier problem actually presents two aspects: i) identify any
particular observation (or observations) which come from a distribution
other than the one which has been assumed to explain the main body of the
observations: spurious observations, ii) obtain a procedure for the analysis of
the data which is not very much affected (if at all) by the presence of
spurious observations or by the rejection of non-spurious observations.

This paper only considers the first aspect of the problem.

lResearch of this author was sponsored in part by DHEW, PHS, National Institutes
of Health under Grant 5 R0O1 CA 18332-02 and by the United States Army under
Contract No. DAAG29-75-C-0024.
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Three basic approaches have been used: the premium-protection,
the significance test and the decision theoretic approaches (see de Alba (1974)
and Guttman and Smith (1969)). We shall use the empirical Bayes (e.B.)
approach of Robbins (1964). Our solution can be c'assified under the
decision theoretic approach.

We shall use the following model. Out of a sample of size n, (n-k)
of the random variables are normal with mean p and variance az, while
the remaining m r.v.'s, also normal, have the same mean w but their
variance is \icz, (xi >1), where i ranges over the subscripts of the

m r.v.'s. If we let the symbol '"~" mean "is distributed as", then

2
Xi,xi,.-.,xi ~ N(P’)U)
12 (n-k) (1.1)
2 g
Xt~N(p,xjc), B )i 0,
j
where (il, IPTRRRY in) is some permutation of the subscripts (1,2,...,n)

and x). is the multiple of the variance of the non-spurious observations

and xjaz is the variance of spurious observation ij.

2. Empirical Bayes Terminology.

We begin by stating the basic elements of decision theory which we
will be using:
i) The parameter space € .

ii) A set A of possible actions.




iii) A loss function L(a,\) >0, defined on A X€&. For any point
(a,\) e AX€, L(a,\) <9 is the loss that results when 6 ¢ ¢
is the true value of the parameter and we take the action a g A.
iv) The sample space % which is taken to be a finite dimensional
Euclidean space. For each X g €& there is defined a c.d.f.
F)\(x).

We shall be working with behavioral decision rules. A behavioral
decision rule, t(x), is a function which gives, for each x in the sample
space, a prokability distribution over A. We thus have the average
loss when using t(x) given by

L(t(x),\) = EL(Z,\)
where the expectation on Z is taken with respect to t(x). Further, the
risk function is defined as

r(t,\) = E)\L(t(X), \)
where EO denotes the expectation of X when the value of the para-
meter is \. The minimum Bayes risk with respect to prior distribution
G on 1\, or Bayes envelope functional, is:

f(G) = r (t.,G) = inf r'(t,G) = inf [ r(t,\)dG() ,

’
= t t

where tG is a Bayes rule.
Suppose we are confronted with the same decision problem repeatedly

and independently. Let (Al’ Xl), (AZ’ XZ)’ v (An, Xn) be a sequence

of mutually independent pairs of random variables, where




Al’ AZ’ &l An all have an unknown common (prior) distribution G
defined on ¢ and the conditional distribution of X given Ar =\

is specified by the p.d.f. fx(x) = (dF)\/dT)(x), r=1,...,n assuming

that the family {F\ :\ e€} is dominated by a ¢-finite measure
T on Z.

The empirical Bayes approach constructs a decision procedure

concerning An (unobservable), based on the values that have been

+1

observed for X,...,X

1 i.e., using x

Xastn L The

n+l’ o R n+l

(Al’ s An) remain unobservable throughout. For a decision about

A a function tn(x whose form depends on the values

n+l’ n+1)’

Xy ooy X is used. An e.B. decision procedure is a sequence

E
T = {tn} of such functions.

Robbins (1963,1964) defined a sequence T = {tn} as being
asymptotically optimal (a.o0.) relative to G if

lim r*(tn,G) = r(G) .

n —-o0o
He also gives conditions under which a rule is a.o.

A question that arises when dealing with empirical Bayes decision
rules is ""how fast, relative to n, does r*(tn, G) converge to the
minimum risk ?'. Johns and Van Ryzin (1971,1972) have studied the problem
and given rates in different situations. We shall also consider the

rate problem in relation to our rules for testing outliers.

-4-




3. An Extension of Empirical Bayes Procedures.

The results presented for testing outliers are based on a non-standard

empirical Bayes framework which can be described as follows. Let

()S, Al)' (XZ, AZ), L iy (Xn, An) be mutually independent pairs of random
variables, Xr(r =1,...,n) is defined on a sample space % and
/\r(r =1,...,n) on a parameter space ©&. The Ar’ =l tlon,s are

assumed to have a common prior distribution G on © and the conditional
density of Xr given that Ar =\ is fx(xr), e W, .t &
o-finite measure .

We now define the empirical Bayes rule for the rth problem,

r=1,...,n, denoted tLr)(Xr). Let tn(x) = tn(Xl, s Xn;x). Define
X (x) = (Xl’ A Xr-l’x’ Xr+1’ e Xn)
and
tfqr)(x) = tn(xl, ik Xr-l’ X, Xr+l’ iy Xn;x) = tn(Z(_r(x);x)

so that the form of the rth decision rule depends on _)_(_r(x). Note
t;ﬁ(xr) = tn(Xr) since tg)(x) differs from tn(x) in that the first has
a fixed value of x in the place of the rth random variable.
This particular use of the e.B. method is non-standard. We have
two differences:
i) We are not actually working with a sequential decision procedure,
and
ii) We do not use a decision rule whose form depends only on the

first (n-1) observations.




If tl(qr)(xr) is obtained for each r =1,...,n and we denote its
%k
risk relative to G by r (tf]r), G), we obtain an n-vector,
ST e L ke R : :
L * {tn (xr), tal ., nf flor S {tn (xr)}) of decision functions which
we shall call an e. B. decision procedure. In our application such a procedure
will give us a rule to determine whether each Xr’ r=1,...,n, is spurious

or not. We make the following definition.

DEFINITION 1. Let (Xl’ Al)’ IS (Xn’ An) be mutually independent pairs

: r
of random variables and tl(_l)(x) = tn(z_(r(x);x), Ee e, ne  1f
£ Q 3 (r)
r (t.,G) = (1/n) Z r(tt’,G) »r(G) as n - (3.1)
n Ploe) n

then the e.B. procedure L = {tflr)(xr)} is said to be "average risk
asymptotically optimal" (a.r.a.o.) relative to G.
The symbol -P—+ will be used to denote convergence in probability. We now
state and prove the following lemma in the case where © = {60, 61} and A= {ao, al}4
A Bayes rule against G in this case can be written as (see

Robbins (1964)),

1 if A (x)>0
t5(x) = = (3.2)

0 if AG(x) <0

where t(x) = Pr{taking action a, IX = x} and

Ag(x) = f {L(ag,\) - L(al,x)}fx(x)dG(x) 1 (3.3)

LEMMA 1. Let .\n(x) & An()_(;x) be such that as n—+», An(x) -P - AG(x)

a.e. (7). Define




(r)
0 if A''(x)>0
£ (x) = A (3.4)
1 if Ag)(x) <D, v
where
) o
A (x) = B8 (X (x)ix)
Let ’
* n
r(t,G) = (I/n) 2o ) ).
r=1
Then, for any 0 < d1 <1, 0< d2 <1, and each fixed r,
d 1-d d
Cw e -re <2t flagml T EIAD60 - 8 ol tar +

2 iy 9
f IAG(x)| ElAn(x) - AG(x)| o L Y S e RN

E denotes the expectation under Xl' b g Xn.

(r) * (r)

PROOF. From the definition of t(x and r (tn , G) we have

r*(tg),G) -1(G) = E [ a0 z‘n"'x; - tg(x) ]dT(x) (3.5)

with tG(x) and AG(x) as in (3.2) and (3. 3). But from (3.2) and (3. 4),
we see that

| ( (r)
1 if a7 (x) - a (x)] > la(x]
16900 -ty <{ S * G

0 otherwise.
and hence

Eltilr)(x) -t (x) | <Pr{iA (x) - x)l > [AG(x)l} , (3.6)

This result and using Fubini's theorem in (3. 5) gives

(1,0 - 16 < [ laglert]aP00 - & (0l 2 lage0l/2)dr(x0

+ [ lagealee(la (x) - a1 > lag(l/2}dr(x)




Markov's inequality applied to the first term with 0 <d, <1 and to the

1
second with 0 < d2 <1 vyields the required result.
Q. E. D.
The following result is an extension of Corollary 1.2 of Robbins (1964),
to a.r.a.o. decision rules.

THEOREM 1. Let (Xl’ Al)’ s (Xn’ An) be mutually independent pairs

of random variables. Let A = {ao,al}, let G be such that

f L(a;,\)dG(A) <@, i =0,1. (3.7)
Let
) 0 if A(r)(x)_>_0
t %) = )
- Eoaf A ) <0,
n
where

Assume that

An(x) = Q(d)l(l(.)y e aleys) ¢‘m(¥);x)’ m2>1

where the following conditions are true:
a) Q(yl, ey ym;x) is continuous in every Y iR L eyt 88 (T

b) ¢j(§1(x)) - ¢j(z<_) = ¢j(x,X2, ceaaX ) - ¢j(x1, ooy X ) <P 0 as

new, §j=2l..0,m 80 (1)
c) ¢j(xl,...,Xn) = ¢j(XV1,...,Xvn), j=1,.0s,m, where (vl,...,vn)
is any permutation of the subscripts (1,+..4n), i.e. the ¢j's

are symmetric in (Xl, Sty Xn).

d) An(x) -P- AG(x) as n-o, a.e. (7).




Then
RS {t(r)(X )} is a.r.a.0.
- AR ¢
PROOF. First note that for r =1
a6 = Qe (X, - -, & (X (xDix) =

(A (X, (x)), -, & (X (X% - A&y(X), .- -, & (K0} + 8, (6) .

Now conditions a) and b) imply that the term in brackets converges to
zero in probability. Thus, with conditiond), as n -, a.e. (7)

K

. (x) -P~» A_(x), x fixed.

G
From Equation (3.6), we have

0, 6) - @) < [ lagmlert1alx) - ageal 2 [ageolare

so that

sup (" (¢, G) - @)} < f iAG(X)f sup {pr([aP(x) - AG(XHz IAG(X)l}}dT(X)-
1<r<n b 1<r<n =

From the symmetry of the ¢j's (condition (c)) we get

pe(1a0( - a1 2 Iagtal} = pellalln - a0 2 a1y,

for =k, . ugtts Hence

sup {r*(tif),G) - 1@} < [ [agx) [pr IAS)(X) - AG(X)I > [a,(x) [ }dr(x) .
l<r<n s

Now

(1) 1
lagt lpetla 00 - a ool 2 [agea ) < lagtal,

1
and (3.7) implies AG(x) is integrable, since as n —= ©, A(n)(x) -P~ AG(x),

implies




lag P13V - a (0] > [a 1) ~0 as n~w, ae. (1),

G

we can apply the Dominated Convergence Theorem to get

(r)

sup {r*(t yG) - r(G)} -0, as n —+w.
l<r<n %
Since
$ % (r) * (1)
(/n) 2, {r(t',G)-r(G)} < sup {r (t, ' G) - (G},
r=1 & 1<r<n
we have

%k
r (tn,G) -r(G) -0, as n - o, so that t, isa.r.a.o.

Q.E.D.
It is convenient to note at this point that we only have to verify
the conditions of Theorem 1 in order to prove a.r.a.o. The following
lemma will prove useful for deriving results on rates of convergence.
LEMMA 2. If A (x) = A (
n n
* (1) =8

n »G) -t(G) =0(n "), forsome s>0,

X;x) 1is symmetric in (Xl’ e ,Xn) and
then

* =S

r(t,G) - r(G) = O(n”®) .

The proof follows from (3.6) and the symmetry of An(x).

4. An e.B. Test for Qutliers.

Consider n independent random variables X Xn, where

TRERY
given Ar =\, Xr is normally distributed with mean pu and variance
X, E=ils sy L@
2
Xr~N(p,0 \), r=1, , N (4.1)




p and 02 are assumed known and Ar has a prior distribution
G={p,1-p} on ©= {l,xo}, defined as follows
+
Pr{/\r =1} =G(1)-G(l) =p,

+
Pr{Ar:)\O}: G\ g) - G(rg) =1-p, 0<p<l

for some )‘0 >1, known, and r =1,...,n. We can use empirical Bayes
methods to test the null hypothesis, for each r, r = 1,...,n,
2
Ho :Xr" N(p, 0 ), vs.
2
Hl s Xr ~ N(p,)\ocr ) o

The procedure is given in the following theorem.
THEOREM 2. Let X, r=1,...,n be defined as above, A = {ao,al}
where the action 3, is defined as a = ""decide in favor of Hi”’
i = 0,1 and the loss function, be such that
L(ao,l) = L(al,)\o) =00
Furthermore, define An(x) as

A (x) = (1-p) Lagiholfy () - pL(a;, D (x)

where f)\(x) is the p.d.f. of x obtained when /\r =\N =1 or )‘O'

M p= I:)(E is a consistent estimator for p, symmetric in X, anda.e.
p(X,(x) - P(X) -P= 0, as n -,

then the e.B. decision rule

0 if An(xr) >0

1 otherwise,

r=1...,n, 1isa.r.a.o. for testing Ho vs. Hl' .

Ty ) 1

(7)

(4.2)




Under HO’Xr has the p.d.f.

fy(x) = (1/aNZr)exp{-(x_- 58 /26%) (4.3)
and under Hl’
f)\ (xr) e (l/a’\JZﬂxo)exp{-(xr - p)z/Z)\oo'Z}, 8 (R (O (4. 4)

0

The proof of the theorem is a direct consequence of Theorem 1 for m = 1.

One particular case of a consistent (symmetric) estimator p is given by
- a
p=(/n) ), £,(X), (4.5)
r=1 %

where

2 2
o x()_(Xr B H)

€o(X) = 02(\ &5
0

A question that arises when estimating G is that of identifiability.

Maritz (1970) gives results on identifiability for location parameters

under normality. A result for scale parameters can be found in de Alba (1974).

As pointed out earlier, the usefulness of e.B. procedures in

statistical applications depends on how fast the Bayes risk of each

successive decision problem approaches the minimum Bayes risk. In

relation to Theorem 2 we have the following result.

THEOREM 3. Assume the conditions of Theorem 2 hold. Let

n
b= (/n) ), 6,(X), where & (X) = {o"xg=(X - W*}/e®(\y=1), then
r=1

wide




f  ——

The proof is straightforward and follows from applying Lemma 1, with
dl =1 and d2 =1, and from Lemma 2, (see de Alba (1974) for details).
In this section we have introduced our approach to the outlier

problem, applying it to a particular case. In the following sections we

will give some extensions.

5. Small Versus Large Outliers.

Suppose we are interested in a test for ''small outliers' against
""large outliers', i.e.

H:\x <\, forsome \x,>1, uvs.

LS g (5.1)
Hl: X > )\0
where X > 1. The '"largeness' criterion is determined by the value of )‘0'
A reasonable loss function for this test is given by
0 \ < )\0 »
L(ao,)\) = (5.2)
l/xo =LAy RPN
0 X > )\0
L(al,x) = (5.3)
1/\ —l/xo, NShg -
Define now
b()\) = L(aoy)\) #; L(alr)\) y
so that g

Agx) = f {Llagy\) = L(aj 1) H, (x)dGOV) = (IAO)fG(X)+{62/(x-p)}f'G(X) ’

with fG(x) = f fx(x)dG(x) and f&;(x) is obtained from the definition of

fG(x), by differentiating under the integral sign. The Bayes rule is:

-]3-




Fﬁ‘

0 if Agx) = IAIL0) + {o2/(x - W)L(x) 2 0
tG(x) =
1 otherwise .

The e.B. rule may be derived by getting consistent estimators for fG(x)

and fb(x). We have the following theorem.

THEOREM 4. Let Xl’ <o ,Xn be independent random variables defined
as in (4.1), the parameter space ¢ = [l,») and let G be any c.d.f.
defined on €. The action space is A = {ao,al}, Hy and H are
given by (5.1) and the loss function by (5.2)-(5.3). Let fn(x) = fn(x;x)
' = f1 (X i i [
and fn(x) fn(_)g,x) be any consistent estimators of fG(x) and fG(x)
respectively, for all X, symmetric in X, and such that
i - - - f ll X
£ (X (x)ix) - £ (Xix) -P~0, for a
£ (X,(x);%) - £ (Xix) -P~ 0, forall x

as n -, and

A(%) = (IAQE (¥) + {o°/x = W (x) -

Then
0 if An(X ) >0
t X)) = 3
1 otherwise,
r=1,...,n, 1is a.r.a.o. relative to G.

The proof follows from Theorem 1 with m = 2.

A particular choice of fn(x) and f;\(x) is given by Johns and

Van Ryzin (1972). With this particular choice, conditions (5.5) and (5.6) are

(5.7)

satisfied (see de Alba (1974).) Theorem 3 of Johns and Van Ryzin (1972) will

be very useful for proving our rate theorems.

-14-




We now define Ky = xl(ul)[ Ky = xZ(uz)] as the class of all real-
valued measurable functions on the real line satisfying the conditions
of the definition of fn(x)[ fx'j(x)] given in Johns and Van Ryzin (1972).
2
Also note that since we are assuming pu and o  are known, in
2 2
(4.1) we can define y = (x - u) /20  and restate our problem for the
density :
(I/Nmyx)exp{-y/A}, y>0, A >1
f\(y) = (5.8)
0 elsewhere .
We can now prove the following rate theorem.
2 2
THEOREM 5. Let Y = (X -pu) /20 ,i=1,...,n, where the X are
i i i
independent random variables defined as in (4.1). Let fn(y) and f;l(y)
be estimates of f(y) = f f)\(y)dG(x) and its derivative given as in [ 7]

with tn(Y) defined by (5.7) for An(y) = ()‘o + (2y) )fn(y) + f;l(y)-

n—l/(ZI +1)

For any £ > 2, if we choose hn = Of ) and Ki € x, in defining

\ ' 2
fn(Y, and fn(y) such that
fu’+i_1Ki(u)du =0 for R L onl=l, 1 =12, {5.9)

and if for some d, 0 <d <1/24 + 3),

pAl+Dd/(2=d)) _

, for some t>0, (5.10)
then

n—d(l—l)/(Zl +1)

f(t ,G) - f(G) = O i

PROOF. If in (5.8) we let 6 = 1/\, then

«]5=




(No/Nwy)exp{-y0} for y>0, 0 <6<l
fo(y) -
0 otherwise .
Furthermore, if

= N6 and h(y) = 1/Nry (5.11)

then fe(y) falls into the theory for Case I of Johns and Van Ryzin (1972). Now

the loss function (5.2)-(5.3) may be written in terms of 6 as

0 0 > 90
L(ao,e) =
90 =xi6) 0 < 90
and
0 6 <6
0
L(al, 8) =
6 - 8, 0> 8,
* *
The hypothesis to be tested will be HO: g2 60 vS. le 0 < 60.
From Lemma 1 with dl = d2 = d we see that
* 1-d 1 d
r((l)G)-r <2% [ lagwl EIA() A (y)"dy +

(5.12)
2% [ lagw "ElA_(v) - agv) %ay,

=]

where A _(y) = (xo + (Zy)-l)f(y) + f'(y).

Gl
Consider the second term on the right hand side of (5.12). We now verify

the conditions of Theorem 3 in [ 7] to obtain the rate of convergence for this term.

Note that from (5.11), we have

-(2441)/2

W (y) = (/Nm(-1/2)20 - (142) + (144). .. - (1+20))y (5.13)

(1)

Hence h' '(y) exists and is continuous for any £ >1. From this and

wibe




Lemma 2 in Johns and Van Ryzin (1972) we know that f“)(y) exists

and is continuous for any f > 1 and y > 0. Furthermore, since 6
is defined on (0,1], E® < is always true as required by their Theorem 3.
We now verify (3. 3) of their Theorem 3. Note that
(2) ' 3 j it
fo () = (-D'£s(v) ) afo +1/2y)y (5.14)
j=1
where the aj's are non-negative constants. Throughout, when writing

the expression for f(r)(y), the summation will be assumed to be from

0
j=1 to j =1 unless stated otherwise. fe(y) is a decreasing function
of y, for y>0. Hence
f(v) = sup f.(y+t)=f.(y) (5.15)

e 0<t<e

forall y >0 and € > 0. From this we get, using 0 <9 <1,

ad Dy = swp [y +nl= sup [ |f( Ny + 1) ldG(e)
" 0<t<e 0<t<e
= [ 1w lacie) = 11" [t YLa(o +1/2yy ace) = 1) |

< [ 1,0 Ya+vey'Ylac(o) =t Daa+ 2wy, (5.00)

where f(Gl)(y) is obtained by repeated differentiation under the integral

sign. Also

lag | = logts(v) = [ of (v)dG(e) | < (8, + Dig(y) . (5.17)

By (5.16) and (5.17)
£.d

S 1ag 4 Mmay <+ o) B a2y + YT (5.18)




. :
where aj = aj/Z) and the expectation is taken with respect to f

G(v)-

Repeated application of the cr—inequality yields

d

1-d_ 0 _* j - tyd 1-d j ot
(1+8,) }:{)_,a,_(zyn)y <+ e) ij}:l(zyu)y 19 (5.19)

where bj = aj*cf_], J=k el =1 and bl = afcé_l. Now by the
Holder inequality
elzy + 'Y 19 < oy + ) ey 1/ Amd)i-d
The first factor on the right is always finite so we need only verify that
the second factor is also finite. By Fubini's theorem
gy otdly fl {e‘d/“'d)/r(l/z)}{fw(e/y)l/z"d/“'d)exp{—ey}dy}dc(o) .
0 0

Hence, provided

1/2 - 1d/(1~d) > 0 , (5. 20)
the expectation will be finite. But this requires d <1/(22 +1) and we
have as a condition in the theorem that d <1/(2f + 3). Hence condition
(3. 3) of Theorem 3 in Johns and Van Ryzin (1972) holds.

We next verify (3. 4) of their Theorem 3. From (5.16), (5.17) and

v(y) = h'(y)/n(y) = -1/2y we get

d

v lal )%y < 0+ o) e aM 4 20y,

S lagy

where s = £ +1. Hence we can apply the same argument from (5.19) to (5.20)
with s instead of f and the condition will be true provided

1/2 - sd/(1 ~d) =1/2~- (2 +1)d/(1-d) >0
which requires d <1/(2¢ + 3). Hence, condition (3.4) in Johns and

Van Ryzin (1972) is satisfied.
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To verify condition (3. 2) of their theorem we use v(y) = -1/2y, (5.15)
and (5.17) to obtain

J lagm v y)|d{f:(y)}d/2dy5

1 0
271+ o) S vy eV Pay + [y ee otV 2ay)
0 1

2% 4 eo)l_d[ﬁ\I +AL],

where AI and AII are defined in an obvious manner. Using the fact

that y >1 and applying the Holder inequality we get, for t >0,

Q0

A <lf{fG(y)}l'd/‘2 1f y }d/z{f v gay Y2 (5.2

with

n = (1 +t)d/2-4d).
Clearly the first factor on the right is finite. Finiteness of the second
factor follows from the definition of fG(y), Fubini's Theorem, the use of
Laplace transforms and application of condition (5.10).

AI can be shown to be finite by noting that

fl e 2 o172 fl A2di/a g

0 G 5 0

Hence condition (3. 2) in Johns and Van Ryzin (1972) holds.

Condition (3.1) of Johns and Van Ryzin (1972) can be shown to hold
by arguments which are essentially the same as those used so far.

This completes the proof that under certain conditions and if the

and f'(y) are used as given in

consistent estimators of fG(y) G
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Johns and Van Ryzin (1972), then the rate of convergence of the second

s ) -(£-1)d/(22+
term in (5.12) is O(n (£-1)d/ l)). We shall now give the rate of

convergence of the first term in (5.12).

From the definition of Af]r)(y), fn(y) and fr'1(Y) we have

AW

L) = (0 + 1729 (y) + ')

n

where
(1) X
£, (v) = (I/nh ) ,-%z /2K (Y - /b )+ Ky - Y)/h )Y,

)3 L g -
£°(y)= (1/nh ) & {(I/Zhn)Kz{(Yj y)/Zhn} K. iy - Yj)/hn}} :

since Kl_(O) =0,1=1,2.
%k
Using the cr-inequality, Ki = sulei(u)l <o, i =12 and(5.17)
u
we get

S lagmn % 1a0y) - a_(n)1%y <
2(ky/2nh )41+ 00)™ [ (8 + 1729 (5 () ay
+ (K/mhd) 42 4y 40 )t S (i} ay . (5.21)
Arguments similar to those used above can be
used to prove that both of the integrals that appear in (5. 2l) are
finite. This, together with the particular choice of hn = O(n—l/(zul)),

yields

S lagw1™E1aBy) - & () 1%y < op™d(-D/20)

The proof of the theorem is completed by using Lemma 2.

Q.E.D.
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This theorem completes the results on testing '"small outliers"
against "large outliers'. In the next section we shall consider another

variation of tests for outliers under the e.B. approach.

6. Unknown Mean and Variance.

2
All the results derived up to now have assumed p and o are

both known. In this section we shall relax this assumption. The first

result we present corresponds to the situation given in Theorem 2 without

the assumption that pn

THEOREM 6.

2
and o are known.

Assume all the conditions of Theorem 2 except that p and

2
0 are unknown and

” =2 ~2 ~2
p=minfl,p), P ={lm, -X -2/ -5
where A' - max{0,A},
n %
m_ = (1/n) X X=m1,
r=1
and
o o] 22 2 =2 =4 .+
uz = {3(m2-XZ)(l +\)t\ﬂ(m2—x ) (L+x\)79 - 12x(m4-6x m2+5X )}
Also let
T 0 = 1/ \fons Eexpl-(x - 0°/25°%)
;\(x) = (1/\J2n0o 2)\)exp{-(x - )_()2/2;2)\} s
and
A _(x) = (1 - p)Ly0V)E, (x) - pL (D1, (x) .

-21-
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Then the e.B. decision rule

D i AK)>0
nt

1 otherwise,

£= 1, ..5,0, 18 a.r.a.0. fortesting H relative to G = {p,q}.

0’
As in Theorem 2, (4.3) and (4.4) are true and by the same argument

given there we have that (3. 4) is satisfied. The remaining conditions

of Theorem 1 are easily verified by using Slutzky's theorem and the

fact that the sample moments are consistent and such that, as n —- <,

4 2 22 4
m, -P= 3¢ [p + (1 - P ] +6p o [p+(1-pN]+u,
2 2
m, -P~o {p+(1-pN}+u,

m, = X -P-> pu. (6.4)
If only 02 is unknown similar arguments can be used. We must
use p instead of X and we do not need (6. 4).
Notice that (6.1) is written with both signs (+ and -). The question of which
root to use can be answered as follows. In the expression under the square
root sign, as n —+ <,
9(m, - %421 +2)°% - 12\ (m,, - 6>-(zm2 ¥ 5%} «pe
904{2x -p=(1-p\ - \p - (l—p)kz}2 = 904{p+(1—p)x + px o+ (l-p)xz— 2.\}2 :
When we take the positive or negative signed term, the two possibilities

~2
with respect to ¢ that we have as n - © are

~

2 ~2 2
UZ-P-U or ¢ =P=o (A ~Ap+DP/\).

«2P=




But
o2 - AP + PA) <u’ if p AL+
550 8 peakl #1r).

Now, in practical applications (1 - p) would usually be small and
(1-p) = 0.1 is already considered too extreme. Box and Tiao (1968),
take the extreme value )\ = 100. On the other hand it seems reasonable
to think that the larger the discrepancy between the variances (i.e.
the larger \) the smaller we would expect (1 - p) to be. So thatin
general we can expect p to be such that p < \/(l +\). This can be
taken as an indication that the estimate of cr2 is the largest of the
two values obtained. This in turn means we should take the positive
root in (6.1).

We present the following rate theorem for the situation where o
is known and p 1is unknown.
THEOREM 7. Assume the conditions of Theorem 2 except that p is
unknown and ;) is defined as

p = min{l, p*}, p* = {(mz AL P X-TZ)/(I & \)02}+

f)‘ #(x), X* = 1,\ is defined as in (6.2) and (6. 3) but with 02 instead
of 32 and An(x) = (1~ B)LO(\)?)\(X) - ELl(l)fl(x). Then,

¥t ,G) - rG) = on™/?) .

PROOF. From Lemma 1, with d =d, 3/4 <d <l, and d, = l, we have

1
w6 - e <2 f IAG(x)ll-dElAg)(x) - a_(x)[ax 4

2 [Ela_(x) - agx) ldx .
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The definition of _\n(x) and AG(x) alonag with repeated use of

the c‘r—inequality yields

JEIA (%) - a 0 ]ax < [Lag, )0 - p) | [ EIE () - £, (x) [dx 4
L@, el [ EIf(x) ~ £(x) ldx + |L(ag,\)] [ EIE (a(p - p) ldx +

ILa, D1 [ EIf )P - B)lax .

Now let

A = { E|?)\(x) - fx(x)ldx, B f El?l(x) ® fl(x)ldx ’

n

C
n

1]
n

f E‘?x(x)(p - B) l[dx  and D f El?l(x)(p = S) ldx .

n
If in Bn we take the Taylor Series expansion of fl(x) about

~

H, we get

where

fi(x 0" = da/aul,_ a = (000) e 0 (k- 0hAT (6.7)

* ~

and p = p+4(p-p), 0<g <l. Hence
s ~ 2 * *

fElfl(x) - fl(x)|dx = E(lp-8l/6%) [ [x-n lfl(x,u )dx | (6.8)

with
* *
f)\*(x:}l ) = {fx*(x)}p=u*’ o= Lh .

Now assume p <u. p and u are fixed so that as x changes,

p.* will shift but always staying within the interval [u,u], hence for

=




a) x<p [x - pl £ ,X = ;i! and ]x -;l > lx - p:‘:l (6.9)
b) x> Ix - pl e [x - p*| and |x - 'ﬁl < fx - p;::l (6.10)
c] wExXy 0<lx-p l<lp-§l. (6.11)

The integral in (6.8) can be broken into three integrals, each one
taken over one of the intervals indicated in a), b) and c¢). The inequalities
given in (6.9)-(6.11) can be used (de Alba (1974)) in the corresponding
integrals to obtain

*

(Wo) [ Ix - wl(1/o VB exp -0 - u")2/20° Jax <

~ r 7 2
4 lp - Bl/o + (b - wW/(c"Nam) , (6.12)

v

where vl’ is the first absolute moment of a standard normal random

variable. The same result is true if u > . In general, since E; =y

JEIT () - £ lax = /0B Pl - ]+ (o - 02/0 + lu - 2l Ae®NEm)) <
(l/u){vl’uxn—l/z 1 ((ri/c)n—l + ((ri/ozﬁ)n—3/2} = O(n-l/z) s (6.13)

é 4 2
with 2 B + (1 - p)ho . A similar argument can be used to prove

A = Om 7%
n

Now in Dn we have, by Fubini's Theorem,

JEIE (e - p lax = E{Ip - Bl [ xax} = Elo - Bl <Elp-p'l,  (6.14)

where
= 2
p' = (m, - BeLeT S0 (6.15)
-1/2
It can be shown (de Alba (1974)) that Elp - p' | < O(n ) and so
Dn = O(n—l/d). Here also, a similar argument can be used to prove
C, = O(n-l/z). Thus
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1/2

[ EIAn(x) - AG(x)ldx P o T e T (6.16)

-1/2)-

This completes the proof that the second term in (6.5) is O(n
We shall now find the rate of convergence of the first term. Using

151 5(_)(1(x)) and ;1 = ;(xl(x))A along with the facts

I, 68| = IW/oNZwl and [E (x| < I/onZml, 27 = 1,0

we get

1aW60 - a_(019 < I/ovzm 1410 - B Uagn) - BiLapA) - (1= B)Lag,A) +

d d dj~ ~d g
L(al,x)l = l1/onzm " [L(a )+L(al,x| Ip, - Bl =A0|pl-p| :
where AO is defined in an obvious manner. Then
(1) g d ~ _~d g 2
Ela () - a_(x)|® <A E[B - BI% <ajElp) - p']" . (6.17)
Repeated use of the cr-inequality gives
d Z a3 2d 2d
la =)o IElp1 19 < (tn - D/ (= + EXTS) +
n~24(|x|4 Z, EIXI Z, Elxlxild). (6.18)
1=2
Let
v - Elx |9 <w i =1 6.19)
' Tha i ’ i=1,...,n. (6.19

Substitution of (6.19) in (6.18) and using the Schwarz inequality, together

with (6.17), yields

EIA (x) -A (x)ld <A, le il = X) W% - 180%™ +

2q) *

Zdn—Zd(| | (n -l)v' + n-l)v ]} (6.20)
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Further, if d >1/2,

1-d (l) d ; : :, g ~d
S1ag el () - A (x) Pdx < A(r,  + vy ) {(n - D/n)on
d 1-2d ~-(2d-1)
] ] - =
AOZ (Tdvd + de){(n 1)/n}n O(n
. a 2 e
where AE) is a constant and T f [xl /(- d) (x)dx < @, Substitution

f (6.16) and (6. 2l) in (6.5) yields
r*(tfll),G) = ot 5

From Lemma 2 the proof is complete.

7. Concluding Remarks.

In this paper we have presented a first approach via e. B. methods
to the problem of detecting outliers. Other alternatives are surely
possible. A first one would be to use a different model, perhaps consider-
ing as outliers those observations which have a shifted mean rather than
a larger variance. An interesting problem would be to determine a
criterion to estimate the value of the increase in variance (\) for the
spurious observations. Other articles on some of these extensions are

being prepared.

«27e
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